REACTIONS OF 3(5)-HALO-6-OXO-6H-ANTHRA[1,9cd]ISOXAZOLES WITH ARENETHIOLS

T. I. Lavrikova, E. V. Arnol'd, V. T. Sakilidi, L. M. Gornostaev

The corresponding 3(5)-arylthio-6-oxo-6H-anthra[1,9-cd]isoxazoles are formed as a result of the reaction of 3(5)-halo-6-oxo-6H-anthra[1,9-cd]isoxazoles with arenethiols.

It has been previously shown [1-3] that 6-oxo-6H-anthra[1,9-cd]isoxazoles I, which contain halogen atoms in the 5 and/or 3 positions, undergo nucleophilic substitution of the halogens under the influence of N-, C-, and O-nucleophiles; depending on the reaction conditions and the nucleophilicity of the reactant, substitution took place both in the 5 position and in the 3 position of the substrates (Ia-h).

The reactions of isoxazoles Ia-m with S-nucleophiles have not been previously studied, although their possible products, viz., 3-arylthio-6-oxo-6H-anthra[1,9-cd]isoxazoles II, may serve as starting substances for the synthesis of naphtho[2,3-a]phenothiazine-8,13-diones IIIa-e, which are of practical importance [4, 5].

We have found that isoxazoles Ia-m react quite readily with thiophenols in dioxane in the presence of potassium carbonate at 25-60°C (Table 1). Replacement of the halogen atom in the 5 position took place at a lower temperature than replacement in the 3 position; this is in agreement with our previously obtained experimental data and quantum-chemical calculations [6] with respect to the greater electrophilicity of the 5 position.

a-eX = H, Y = Cl; b, f X = Y = Br; c, g X = Y = Cl; d, h $X = CH_3$, Y = Br; IIa X = H, R = H; h X = Br, R = H; c X = Cl, R = H; d $X = CH_3$, R = H; e X = H, R = CH₃; f X = Br, R = CH₃; g X = Cl, R = CH₃; h $X = CH_3$, R = CH₃; I--II i R² = H; I --II. j = m R² = CH₃; II j R³ = H; IIk R³ = NO₂; IIm R³ = OCH₃; II i , 1 R³ = CH₃

The site of incorporation of one arylthic group into substrates Ib, c was confirmed by the reduction of IIb, c, respectively, to give 1-amino-4-phenylthic-9,10-anthraquinone ($\lambda_{max} = 524$ nm) and 1-amino-2-bromo-4-phenylthic-9,10-anthraquinone ($\lambda_{max} = 531$ nm). 1-Amino-2-phenylthic-9,10-anthraquinone, which we obtained independently, is characterized by a long-wave maximum only at 481 nm. This effect of electron-donor substituents in the 2 and 4 positions of 1-amino-9,10-anthraquinone on the location of the absorption bands in the UV spectra is in agreement with the literature data [7].

Krasnoyarsk State Pedagogical Institute, Krasnoyarsk 660607. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 822-824, June, 1993. Original article submitted April 1, 1992.

Com- pound	Empirical formula	mp, °C	UV spectra, λ_{max} , nm (lg ϵ)	Yield, %
Па	C20H11NO2S	187189	351 (3,94); 374 (3,90); 464 (4,18); 495 (4,31)	84
пь	C ₂₀ H ₁₀ BrNO ₂ S	263265	360 (3,90); 378 (3,90); 471 (4,19); 502 (4,34)	85
IIc	C ₂₀ H ₁₀ ClNO ₂ S	264266	358 (3,90); 375 (3,90); 468 (4,18); 498 (4,32)	83
Пd	C ₂₁ H ₁₃ NO ₂ S	217219	355 (3,90); 373 (3,83); 462 (4,12); 491 (4,25)	92
IIe	C ₂₁ H ₁₃ NO ₂ S	200202	357 (3,89); 373 (3,90); 467 (4,21); 495 (4,28)	81
ПĘ	C21H12BrNO2S	264266	359 (3,86); 377 (3,92); 471 (4,20); 500 (4,37)	82
Иg	C21H12CINO2S	260262	358 (3,81); 377 (3,89); 470 (4,13); 500 (4,27)	80
IIh	C22H15NO2S	117119	356 (3,86); 373 (3,80); 463 (3,74); 493 (4,24)	90
Пi	C27H18N2O2S	206207	360 (4,03); 385 (4,02); 505 (4,32); 532 (4,39)	71
Цj	C27H18N2O2S	174175	360 (3,94); 383 (3,94); 508 (4,25); 535 (4,27)	82
līk	C27H17N3O4S	225226	360 (3,98); 376 (3,95); 505 (4,18); 532 (4,25)	83
и1	C28H20N2O2S	220221	361 (3,98); 383 (3,99); 505 (4,30); 532 (4,34)	85
IIm	C28H20N2O3S	215216	361 (4,01); 383 (4,01): 505 (4,33); 535 (4,37)	86

TABLE 1. Characteristics of the Synthesized IIa-m

7-Hydroxynaphtho[2,3-*a*]phenothiazine-8,13-diones III are promising as IR dyes [8] because of the presence of an absorption maximum at 700 nm. In this connection, it seemed of interest to synthesize 7-arylaminonaphtho[2,3-*a*]phenothiazine-8,13-diones III from the isoxazoles IIi-m that we obtained.

When isoxazolones IIi-m were refluxed in nitrobenzene, they did, in fact, undergo isomerization to azines III, which were obtained in high yields. Their long-wave absorption maxima are also found at 700 nm; this indicates the possibility of their practical utilization (Table 2).

II i III a $R^2 = H$; IIj-m III b-e $R^2 = CH_3$; II i-1 III a, d $R^3 = CH_3$; II j, III b $R^3 = H$; II k III c $R^3 = NO_2$; IIm, III e $R^3 = OCH_3$

EXPERIMENTAL

The IR spectra of the compounds were recorded with a Specord IR-75 spectrometer. The UV spectra of solutions in toluene were recorded with a Specord UV-vis spectrophotometer. The melting points were determined on a Boëtius heating platform.

The results of analysis of the synthesized compounds for N, S, and Hal were in agreement with the calculated values.

Arylthio-6-oxo-6H-anthra[1,9-cd]isoxazoles IIa-m (General Method). A 3.6-mmole sample of potassium carbonate and 2 mmole of the thiophenol were added to a solution of 2 mmole of starting isoxazole Ia-m in 30-50 ml of dry dioxane, and the mixture was stirred for 4-8 h at 20-25°C. The solution was then poured into 500 ml of ice water, and the precipitated IIa-m were removed by filtration, washed with water, and dried.

1-Amino-2-bromo-4-phenylthio-9,10-anthraquinone. A mixture of 0.2 g (0.5 mmole) of isoxazole IIb and 0.1 g of a catalyst (Pd/C) in 150 ml of dioxane was hydrogenated with hydrogen at 50°C and atmospheric pressure until hydrogen absorption ceased (\sim 3 h). The catalyst was removed by filtration, the solution was evaporated, and the precipitated 1-amino-2-bromo-4-phenylthio-9,10-anthraquinone was removed by filtration. The yield of the product, which had mp 228-230°C (from ethanol), was 0.12 g (60%).

1-Amino-4-phenylthio-9,10-anthraquinone was similarly obtained.

TABLE 2. Characteristics of the Synthesized IIIa-e

Com- pound	Empirical formula	mp, °C	UV spectra, λ_{\max} , nm (1g ϵ)	Yield,
				1
IIIa	C27H18N2O2	256257	447 (3,7); 600 (3,9); 645 (4,1); 704 (4,2)	92
Шb	$C_{27}H_{18}N_2O_2$	286288	446 (3,71); 592 (3,91); 641 (4,21); 694 (4,21)	70
Шc	C27H17N3O4	348349	467 (3,71); 595 (3,81); 630 (4,1); 6,80 (4,1)	90
Шq	$C_{28}H_{20}N_2O_2$	280281	450 (3,71); 599 (3,91); 649 (4,21); 704 (4,21)	95
Ш'е	C ₂₈ H ₂₀ N ₂ O ₂	234235	450 (3,75); 606 (3,94); 658 (4,22); 714 (4,21)	97

7-Hydroxynaphtho[2,3-a]phenothiazine-8,13-diones IIIa-e (General Method). A 0.8-mmole sample of IIi-m was refluxed in 8 ml of nitrobenzene for 20-60 min, after which the mixture was cooled, and the precipitated IIIa-e were removed by filtration and recrystallized from o-dichlorobenzene.

REFERENCES

- 1. G. I. Zolotareva and L. M. Gornostaev, Khim. Geterotsikl. Soedin., No. 10, 1329 (1983).
- 2. L. M. Gornostaev, G. I. Zolotareva, and D. Sh. Verkhovodova, Khim. Geterotsikl. Soedin., No. 7, 885 (1984).
- 3. L. M. Gornostaev, G. F. Zeibert, T. F. Turbovets, and G. I. Kolesetskaya, Zh. Org. Khim., 20, 1746 (1984).
- 4. Venkataraman (ed.), The Chemistry of Steric Dyes [in Russian], Vol. 3, Khimiya, Leningrad (1977), p. 2058.
- 5. Masaru Matsuoka, Kim Hoon Sung, and Teijiro Kitao, J. Chem. Soc., Chem. Commun., No. 17, 1195 (1985).
- 6. A. P. Es'kin, L. M. Gornostaev, G. F. Zeibert, G. A. Bogdanchikov, and A. V. El'tsov, Zh. Org. Khim., 20, 188 (1990).
- 7. V. Ya. Fain, Tables of Electronic Spectra of Anthraquinone and Its Derivatives [in Russian], Khimiya, Leningrad (1970).
- 8. Kim Sung Hoon, Masaru Matsuoka, and Kitao Teijiro, Chem. Lett., No. 9, 1351 (1985).